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[4] P. Farkǎsovsḱy, Phys. Rev. B54, 7865 (1996)
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One-dimensional case
In Fig. 2 a typical example of the specific heat inD = 1 is plotted. Contrary to
previous results we have observed inD = 1 two maxima, the broad hight temper-
ature maximum of Schottky type and asharp low temperature maximum which
take a place nearτ = 0.0035 (Fig. 2) and which wasnot observed before [5].
Also the charge susceptibility shows a sharp maximum near the τ = 0.0035, and
then it rapidly decreases with decreasing temperature to the zero. Therefore we can
conclude that the low temperature maximum is related to the temperature induced
electron fluctuations between thef andd subsystem.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 0  0.5  1  1.5  2

C
/k

B

τ

U=0.6, Ef=-1.44
D=1

L=80
L=96

L=112
L=128
L=144
L=160

0.04

0.08

0.12

0.16

 0  0.01  0.02  0.03

C
/k

B

τ
 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.5  1  1.5  2

χ

τ

U = 0.6
Ef = -1.44
D = 1

L=80
L=96

L=112
L=128
L=144
L=160

 0.0

 0.2

 0.4

 0.6

 0.8

 0  0.01  0.02  0.03

χ

τ

Fig. 2 The specific heatC = β2
(

〈

E2
〉

− 〈E〉2
)

/L and the dependence of the

charge susceptibilityχ = β2
(

〈

N 2
f

〉

− 〈Nf〉
2
)

/L of the FKM forU = 0.6, Ef =

−1.44 and various lattice sizes inD = 1. The insets are the details of the low
temperature peaks.

The rapid increase of the specific heat coefficientγ = C/τ at low temperatures,
indicates the presence of the quasiparticles with large effective masses and there is
no sign of the Fermi liquid like behaviour.
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The temperature dependence of the specific heat coefficientγ = C/τ , of the FKM
for U = 0.6, Ef = −1.44 and various lattice sizes inD = 1.

Two-dimensional case
The thermodynamics properties in two dimensions significantly differ from the one
dimensional case. The results suggest that the low temperature maximum in the
specific head of the two-dimensional case will not survive inthe thermodynamic
limit (Fig. 3). Therefore there is no order-disorder transition in the metallic region
at finite temperatures inD = 2. The specific heat coefficientγ for τ > 0.01 increase
with the decreasing temperature. Similarly as inD = 1 this indicates the presence
of the quasiparticles with large effective masses.
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Fig. 3 The specific heat and the specific heat coefficient of theFKM for U = 2.0,
Ef = −1.9 and various lattice sizes inD = 2. Here Lx means the linear size
(L = Lx × Lx)

Results and discussion
We have used the known results obtained for the one dimensional case (D = 1)
[4, 5] as the starting point for our study and we also extendedto theD = 2 case.
The parametersU andEf have been chosen so that the ground state of the model is
phase separated and metallic [6] in all used cases. In following we use the param-
etersU = 0.6, Ef = −1.44 in D = 1 andU = 2.0, Ef = −1.9 in D = 2 as the
typical representatives of the metallic region.

Method
Partition function of the canonical ensembleZ = Sp exp(−βH) for the FKM,
whereβ = 1/τ andτ = kBT/t can be rewritten as:

Z =
∑

{wf},{wε}

e−β(EfNf+
∑

i εiw
ε
i ) (2)

whereεi are the eigenvalues of the matrixh(wf) = t+Uw
f in the ascending order.

The used notation{wf} means that the summation runs over all possiblef -electron
configurations and notation{wε} means that the summation runs over all possible
occupations of the single-particle energy levelsεi. It is obvious that the Monte-
Carlo procedure can be used to sample the configurationswf , wε according to the
weightX = e−β(EfNf+

∑

i εiw
ε
i )/Z.
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Fig. 1 Test of the method:(a)-(c) The specific heat of the FKM in the symmetric case
for U = 2, Ef = 0, D = 1 and different lattice sizes computed by (a) GCM where
µ = U/2 [2, 3], (b) CMC whereNf + Nd = L and (c) CMC whereNf = Nd = L.
(d) Comparison of the specific heat computed with different methods forL = 100.
The convergence of both canonical Monte Carlo cases is comfortable and the CMC
is able to reproduce the results of the grand-canonical Monte Carlo.

Introduction
It was shown that the Falicov-Kimball model (FKM) [1] can yield the correct

physics for a description of the ground-state as well as the thermodynamic proper-

ties of the rare-earth and transition-metal compounds (at least qualitatively). The

Hamiltonian of the model can be written as a sum of three terms:

H =
∑

i,j

tijd
+
i dj + U

∑

i

f+
i fid

+
i di + Ef

∑

i

f+
i fi, (1)

wheref+
i , fi are the creation and annihilation operators for an electronin the lo-

calized state at lattice sitei (wi = f+
i fi) with binding energyEf andd+

i , di are the
creation and annihilation operators of thed electrons hopping between the nearest-
neighbour sites with hopping probabilitytij = −t. The second term represents the
on-site Coulomb interaction between thed andf electrons. Despite of a consid-
erable amount of effort devoted to understanding the thermodynamic properties of
the FKM, there are stilla lot of unsolved questions mostly related with the un-
symmetric case. We have decided to explorethe thermodynamics properties of
the metallic phase, which is important for the study of the metal-insulator transi-
tions and lies far away from the symmetric point. For this purpose we introduced
a simplecanonical form of the classical Monte Carlo for the FKM, that can be
used in the unsymmetric case.
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