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Introduction

It was shown that the Falicov-Kimball model (FKM) [1] can Methe correct
physics for a description of the ground-state as well ashitBetodynamic proper-
ties of the rare-earth and transition-metal compoundse@tiqualitatively). The
Hamiltonian of the model can be written as a sum of three terms
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where f;*, f; are the creation and annihilation operators for an eledtrahe lo-
calized state at lattice sitgw; = f;" f;) with binding energyE's andd;", d; are the
creation and annihilation operators of thelectrons hopping between the nearest-
neighbour sites with hopping probability = —¢. The second term represents the
on-site Coulomb interaction between ti@nd f electrons. Despite of a consid-
erable amount of effort devoted to understanding the thdymamic properties of
the FKM, there are stila lot of unsolved questions mostly related with the un-
symmetric case. We have decided to explotbe ther modynamics properties of
the metallic phase, which is important for the study of the metal-insulatomsa
tions and lies far away from the symmetric point. For thisgomse we introduced
a simplecanonical form of the classical Monte Carlo for the FKM, that can be

used in the unsymmetric case.

Method

Partition function of the canonical ensemiife = Spexp(—(H) for the FKM,
where = 1/7 andr = kT /t can be rewritten as:

7 Z o BN+, eqwy) (2)
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wheree; are the eigenvalues of the matfiw/) = t +Uw/ in the ascending order.
The used notatiofiw’ } means that the summation runs over all possibédectron
configurations and notatiopw®} means that the summation runs over all possible
occupations of the single-particle energy levels It is obvious that the Monte-
Carlo procedure can be used to sample the configurations© according to the
weight X = e PUEN+2iswl) |7,
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Fig. 1 Test of the method:(a)-(c) The specific heat of the FKMé symmetric case
forU =2, E; =0, D = 1 and different lattice sizes computed by (a) GCM where
pw="U/2[2, 3], (b) CMC whereNs + N; = L and (c) CMC whereVy = N; = L.

(d) Comparison of the specific heat computed with differegthiods forL = 100.
The convergence of both canonical Monte Carlo cases is atabfe and the CMC

IS able to reproduce the results of the grand-canonical Mdbarlo.

Results and discussion

We have used the known results obtained for the one dimesistaize D = 1)
[4, 5] as the starting point for our study and we also extertddtie D = 2 case.

The parameter§ and E; have been chosen so that the ground state of the model is

phase separated and metallic [6] in all used cases. In follpwe use the param-
etersU = 0.6, £y = —144in D = 1landU = 2.0, £y = —=1.9In D = 2 as the
typical representatives of the metallic region.

One-dimensional case

In Fig. 2 a typical example of the specific heatlin= 1 is plotted. Contrary to
previous results we have observediin= 1 two maxima, the broad hight temper-
ature maximum of Schottky type andsiaarp low temperature maximum which
take a place near = 0.0035 (Fig. 2) and which wasot observed before [5].
Also the charge susceptibility shows a sharp maximum nesar th 0.0035, and
then it rapidly decreases with decreasing temperatureetedio. Therefore we can
conclude that the low temperature maximum is related todghmerature induced
electron fluctuations between thieandd subsystem.
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Fig. 2 The specific heaf’ = 3 <<E2> — (E}Q) /L and the dependence of the

charge susceptibility = (3 <<N]%> — (Nf>2) /L of the FKM forU = 0.6, E; =
—1.44 and various lattice sizes i = 1. The insets are the details of the low
temperature peaks.

The rapid increase of the specific heat coefficient C'/7 at low temperatures,
Indicates the presence of the quasiparticles with largeetfie masses and there is
no sign of the Fermi liquid like behaviour.
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The temperature dependence of the specific heat coefficient’/r, of the FKM
for U = 0.6, £y = —1.44 and various lattice sizes iy = 1.

Two-dimensional case

The thermodynamics properties in two dimensions signifigatiffer from the one
dimensional case. The results suggest that the low temperataximum in the
specific head of the two-dimensional case will not survivéhe thermodynamic
limit (Fig. 3). Therefore there is no order-disorder traiesi in the metallic region
at finite temperatures i = 2. The specific heat coefficientfor = > 0.01 increase
with the decreasing temperature. Similarly agin= 1 this indicates the presence
of the quasiparticles with large effective masses.
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Fig. 3 The specific heat and the specific heat coefficient oFKM for U = 2.0,
E; = —1.9 and various lattice sizes i) = 2. Here L, means the linear size
(L=1L, x Ly,)
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