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Density of States
In Fig.3 the single-particle DOS for the three dimensional FKM is shown. A fine
structure appears in the DOS in the region of0 < ω < U (Fig.3(a)), that with
increasingτ transforms to a pseudo-gap. In the limit of the weak Coulomb interac-
tion the sufficiently high temperature closes the pseudo-gap (inset of Fig.3(c)). For
an intermediateU a pseudo-gap persists even forτ → ∞ (Fig.3(c)). Finally, for
the strong coupling limit the fine structure reduces the width of the gap but it still
remains open.
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DOS forU = 4 at various temperatures forL = 512. Dotted line in figure (c)
represents the solutions forτ → ∞. Inset in (c) is a detail of the temperature
evolution of the fine structure of DOS in the region of0 ≤ ω <≤ U for a weak

Coulomb interactionU = 2 and variousτ .

Fig.4(a3-d3) illustrates the finite temperature Mott-Hubbard transition as a function
of U in the real dimension and for the homogeneous phase. Moreover, with increas-
ing dimension the fine structure becomes smoother, and finally, transforms in the
smooth maxima forD = ∞. In the weak coupling limit the character of DOS in
D = ∞ is even closer to the realisticD = 3 case than theD = 2 case. The opposite
is true in the strong coupling limit, where the DOS in infinitedimensions lacks the
peaks and local minima nearω = µ ± U/2. This fact can play an important role
in the correct description of electronic correlations of real materials inD = 3 since
these details are connected with the interaction betweenf andd electrons.
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DOS in the homogenous phase computed for differentU and different dimensions.
Both open (black) and periodic (red) boundary conditions and units oft′ = 2t

√
D

are used. In the infinite dimension the DOS (computed by DMFT [5]) for
hypercubic lattice (black solid line) and Bethe lattice (blue dashed line) are

plotted.
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Fi.2 The transition temperatureτc of the half-filled FKM as a function ofU
obtained forD = 2 [3], D = ∞ [4] and D = 3. Units oft′ = 2t

√
D are used.

It is evident that outside the weak coupling limit the critical temperature inD = 3
is considerably enhanced in comparison toD = 2, and it is considerably smaller
than inD = ∞.

CV,N as a function ofτ shows sharp low-temperature peak which scales with the
lattice size. Hereby the structure factorSq(π, π) changes rapidly from1 to ∼ 0
(insets in Fig.1), near the temperature where the maximum ofCV,N appears. This
indicates that the sharp maxima can be used to estimate the critical temperature of
the phase transition from the ordered phase to the disordered phase.

Critical temperatures
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Fig.1 Specific heat as a function ofτ for U = 2 and different lattice sizes. The
insets represent the temperature dependencies of the structure factor

Sq(π, π) = 1
2L

∑
j,k eiQ(Rj−Rk) (wjwk).

Introduction
The Hamiltonian of the Falicov-Kimball model (FKM) [1] can be written as a sum

of three terms

H =
∑

i,j

tijd
+
i dj + U

∑

i

f+
i fid

+
i di + Ef

∑

i

f+
i fi, (1)

wheref+
i , fi are the creation and annihilation operators for an electronin the lo-

calized state at lattice sitei with binding energyEf andd+
i , di are the creation and

annihilation operators of thed electrons hopping between the nearest-neighbour

sites with hopping probabilitytij = −t. The second term represents the on-site

Coulomb interaction between thed andf electrons.Most of the results obtained

for the FKM have been calculated for the limiting cases of D = 1, D = 2 and

D = ∞ (where D is the dimension of the system) and it is not clear if these

results hold also in the realistic case (D = 3). In this paper we consider only the

symmetric point of the model (µ = U/2, Ef = 0). The Classical Metropolis algo-

rithm [2, 3], is used for the investigation of thermodynamics of the FKM. Where

the so called electronic free energy

F (w) = (Ef − µ)Nf −
1

β

∑

i

ln(1 + e−β(ǫi−µ)), (2)

is used as the statistical weight in the algorithm. The simulations started mostly at
high temperatures with random configuration. Data were generated typically with
105 MC steps per site after discarding at least3 × 104 initial MC steps per site.
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